Combining Supervised and Unsupervised
ثبت نشده
چکیده
This work combines a set of available techniques {which could be further extended{ to perform noun sense disambiguation. We use several unsupervised techniques (Rigau et al., 1997) that draw knowledge from a variety of sources. In addition, we also apply a supervised technique, in order to show that supervised and unsupervised methods can be combined to obtain better results. This paper tries to prove that using an appropriate method to combine those heuristics we can disambiguate words in free running text with reasonable precision.
منابع مشابه
Combining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Unsupervised and Supervised Methods for PP Attachment Disambiguation
Statistical methods for PP attachment fall into two classes according to the training material used: first, unsupervised methods trained on raw text corpora and second, supervised methods trained on manually disambiguated examples. Usually supervised methods win over unsupervised methods with regard to attachment accuracy. But what if only small sets of manually disambiguated material are avail...
متن کاملCombining Supervised and Unsupervised Parsing for Distributional Similarity
In this paper, we address the role of syntactic parsing for distributional similarity. On the one hand, we are exploring distributional similarities as an extrinsic test bed for unsupervised parsers. On the other hand, we explore whether single unsupervised parsers, or their combination, can contribute to better distributional similarities, or even replace supervised parsing as a preprocessing ...
متن کاملComparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملUBC-UMB: Combining unsupervised and supervised systems for all-words WSD
This paper describes the joint submission of two systems to the all-words WSD subtask of SemEval-2007 task 17. The main goal of this work was to build a competitive unsupervised system by combining heterogeneous algorithms. As a secondary goal, we explored the integration of unsupervised predictions into a supervised system by different means.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000